В этом случае будет логичным делить координатные сигналы X = X+ – X– и Y = Y+– Y– на суммы их составляющих:
и
(1)
При этом, кроме компенсации энергозависимости координатных сигналов, будут компенсироваться и погрешности за счет разброса резисторов координатной матрицы.
Представим координатные сигналы в виде сумм
;
;
;
, (2)
где N – число ФЭУ, ui - выходной (пороговый) сигнал i-го ФЭУ. Этот сигнал можно записать как ui = giE, где Е – энергия g-кванта , вызвавшего сцинтилляцию. Коэффициент gi в основном зависит от расстояния центра ФЭУ до места вспышки, а также от индивидуальных параметров ФЭУ. В принципе, его величина для определенных точек (тестовых, или реперных) может быть рассчитана. Подставляя в формулы (1) суммы (2), получим
;
. (3)
Как видно из формул (3), энергетическая зависимость координатных сигналов исключена. Теперь они в основном зависят от геометрических констант и электрических параметров (сопротивлений матриц и масштабных коэффициентов делителей). Кроме того, как уже отмечалось выше, погрешности в их вычисление вносит дискретность фотоприемников.
Если известны весовые коэффициенты ai , bi , то сопротивления координатной матрицы определяются по формулам
;
;
;
, (4)
здесь R0 – сопротивление резистора в цепи обратной связи сумматора.
Наиболее простой способ определения весовых коэффициентов состоит в линейной аппроксимации их зависимости от координат. Рассмотрим, как это делается на примере группы ФЭУ, расположенных на оси X матрицы, состоящей из 19 ФЭУ (см. рис.3). Эта группа изображена на рис 5 Коэффициент а+ изменяется слева направо от нуля до единицы, а коэффициент а– наоборот – от единицы до нуля. Это значит, что левый крайний ФЭУ (3) не вносит никакого вклада в координатный сигнал Х+, а правый крайний (4) – в Х–. Весовой коэффициент ФЭУ, расположенного в центре (1), равен 0,12 Поэтому его вклады в сигналы Х+ и Х– будут одинаковыми и при их вычитании они компенсируются.
|
Сопротивления резисторов и
определяются по формулам (3). На рис. 5 их графики имеют вид гипербол, зеркально отраженных относительно оси симметрии. При этом сопротивления
для ФЭУ 13 и
для ФЭУ 19 будут равны R0 , а для центрального ФЭУ все четыре весовых резистора будут иметь одинаковые сопротивления 2R0. Сопротивления
и
соответственно для ФЭУ 19 и 13 равны бесконечности, т.е. просто отсутствуют. Весовые сопротивления
для ФЭУ 4 и 7 будут равны соответственно 4R0 и 4/3R0 , или 1,333R0. Из этого простого примера видно, что для координатной матрицы нужно брать высокоточные спротивления (не менее 0,1%).
Для оптимизации сопротивлений резисторной матрицы можно воспользоваться критериями минимума нелинейности пространственной зависимости координатных сигналов или минимума неоднородности изображения. Сущность первого метода состоит в минимизации суммы квадратов отклонений координатных сигналов от истинных координат сцинтилляций, вычисленных в нескольких тестовых точках, равномерно покрывающих площадь детектора. График коэффициентов а+, найденных этим методом, показан на рис.5 тонкой линией.
Разработка комплексной системы защиты информации отдела внутренних дел по Вьюжному району Ленинградской области
Целью данной работы является разработка эффективной системы защиты
информации, а для ее успешной реализации необходимо провести ряд важных
мероприятий: анализ производственной деяте ...
Технология изготовления ваттметра
Производственный
процесс представляет совокупность всех действий людей и орудий производства,
необходимых на данном предприятии для изготовления или ремонта РЭА.
Технологический
проц ...
Передатчик импульсный СВЧ диапазона
Управление полетом современных летательных
аппаратов (ЛА) - технически сложный процесс, который требует большого
количества стабильной и достоверной информации о параметрах полета, режим ...